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Coil-globule transition: comparison of field theoretic and 
conformational space formulations 

A L Kholodenkot and Karl F Freed 
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA 

Received 20 March 1984 

Abstract. The description of polymer collapse is presented both in conformational space 
and field theoretic forms along the same lines as we have provided for treating the theta 
point (tricritical) region for polymers. This enables the problem to be considered in terms 
of the same measurable parameters which are used in the theta and good solvent regimes, 
thereby removing a serious deficiency of some previous treatments where the basic para- 
meters of the theory are not directly measurable. We consider the self-consistency and 
range of validity of various mean field approaches and demonstrate the need for reinterpreta- 
tion of some previous works. We generalise prior descriptions of the coil-globule transition 
to include contributions from fluctuations and to determine the excitations of the globule. 
In addition, criteria are derived giving the limits of stability of the globular phase. Our 
analysis underlies the profound role played by the effective three-body interaction upon 
the nature of the transition, explaining the source of previously suggested ‘non-universality’ 
of this transition. 

1. Introduction 

The collapsed globular state of polymers is the normal state of most biological 
macromolecules such as proteins. DNA in living cells is densely packed and is effectively 
in the collapsed state (Tanaka 1983). In addition, many interesting phases of block 
copolymers involve collapsed states of one of the blocks. Hence, the study of the 
collapsed polymer as well as the coil-globule transition poses an important scientific 
problem. It is natural to first attack this problem for simple uncharged flexible 
homopolymers before considering the more complicated biopolymers with specific 
monomer sequences, local interactions, and charged groups. 

According to Flory (1953) a single flexible polymer chain, immersed in a solvent, 
can exist in either a swollen or collapsed state depending on the solvent quality which, 
in turn, is determined by a delicate balance between the polymer-polymer and polymer- 
solvent interactions. The net effects of these interactions are represented in terms of 
effective two- and three-body interactions as described below. In good solvents it is 
found experimentally that the magnitude of the two-body interactions is directly related 
to the second virial coefficient. The polymer chain is defined to be ideal (Gaussian) 
at the theta temperature 0 where the second virial coefficient vanishes. This theta 
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temperature serves as the borderline between the good solvent (somewhat above 0 )  
and the poor solvent (below 0) regimes. (For  convenience, we consider 0 to be an  
upper @-temperature for the purposes of this discussion as the treatment of a lower 
@-temperature follows simply.) As the temperature T is raised above 0, the polymer 
swells, while below 0 it dramatically shrinks in size. The two- and three-body interac- 
tions in the theta and  poor solvent domains are used to represent the counteracting 
attractive and repulsive portions of the actual interactions, so in good solvents, where 
polymer-polymer interactions are primarily repulsive, the three-body terms are un- 
necessary. 

The importance of the collapsed state of polymers has led to its recent study by 
numerical simulations (Baumgartner 1982, Kremer et a1 198 1 )  and experimental 
methods (Pritchard and  Caroline 1980, Nishio et a1 1982). It is still necessary, however, 
to understand the connection between the theoretical parameters in the description of 
the collapsed state and  those used empirically and theoretically for polymers in the 
theta region (Kholodenko and  Freed 1984a, b, Douglas and  Freed 1984) and  in good 
solutions, in order to develop a predictive theory of the coil-globule transition. For 
instance, the extensive work of Lifshitz et a1 (1978) uses a set of parameters which 
are not experimental measurables, making many predictions difficult, if not impossible, 
to verify. Despite the theoretical advances in treating the collapsed polymer, a number 
of fundamental problems remain unsolved; these are described below after briefly 
discussing the status of some of the available theory. 

Average polymer properties, such as the mean square end-to-end vector (R’) ,  the 
coherent scattering function S ( k ) ,  etc, are believed (de  Gennes 1975, 1978) to be 
described by a single crossover scaling function. For (R’) this is written as 

(R2)’” = N”f(gN”) ,  (1.1) 

where N is the chain length, g the effective two-body interaction strength (proportional 
to 1 - (0/  T )  with T the absolute temperature), v is the size exponent in the theta 
solvent regime, 4 is a crossover exponent and  f is a scaling function. Our previous 
chain space renormalisation group calculation (Kholodenko and  Freed 1984a) derives 
an  explicit form like (1.1) in the theta point (‘tricritical’) region and provides an  
estimate of the collapse transition temperature. These calculations show that the scaling 
form (1.1) is rigorously valid only in the theta point regime. It is somehow necessary 
to match the theta regime results with those valid in the good solvent limit for T > 0 
and with those for collapsed polymers ( T  < 0) in order to achieve a smooth crossover 
and a comprehensive theory of the possible states of a flexible polymer in terms of a 
small set of measurable phenomenological parameters. 

The coil-globule crossover has been the subject of Monte Carlo calculations using 
a finite scaling analysis (Baumgartner 1982). Baumgartner (1982) and  Kremer et al 
(1981) show that the scaling form (1.1) is valid in the theta and good solvent regimes, 
but below the theta point the data are rather inconclusive and ‘distinct and systematic 
deviations from the expected scaling laws are apparent’ (Kremer et a1 198 1) .  Technical 
difficulties are very serious in applying numerical simulations to polymers with large 
N in the coil-globule transition region, so these highly useful methods cannot yet 
adequately treat the transition. 

Hence, it is necessary to study the coil-globule transition by purely theoretical 
means. Kremer et a1 (1981) summarises the large body of theoretical work to date. 
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All these previous theories are of the mean field variety and  are inconclusive in many 
respects. Arguments still exist as to the order of the transition with some claiming that 
it is a second-order transition (Moore 1977) while others find that it is sometimes first 
or second order (Lifshitz et a1 1978). Baumgartner (1982) quotes d e  Gennes as believing 
that the collapse transition should be associated with the ‘tricritical’ region and therefore 
be first order, although he  states that ‘no evidence for tricriticality of the collapse has 
been demonstrated so far, neither by experiment nor by computer simdation’. Earlier 
computer simulations by Domb (1974) suggest a first-order transition. 

Here we extend previous mean field descriptions to include JIuctuations about the 
mean field, an analysis of the stability of the globular state, and an approximate 
calculation of the thermal excitations of the globule. The treatment of fluctuations is 
shown to be crucial in determining the stability of the globular state. In the transition 
region the fluctuations become comparable to the mean field, so purely mean field 
methods are insufficient to determine the order of the coil-globule transition. Mean 
field theories are only useful for describing the j n a l  collapsed state; they must be 
modified to treat the transition. The order of the collapse transition may only be 
approximated with mean field theories in terms of differences between the coil before 
transition and the globule after it. 

In  order to permit us to include the effects of fluctuations, it is necessary to 
considerably extend and  generalise previous mean field descriptions of the coil-globule 
transition. We consider this transition using the same microscopic model as in our  
treatment of the theta point region (Kholodenko and Freed 1984a, b) in order to permit 
the development of a unified description of the states of a flexible polymer as a function 
of temperature using the same phenomenological parameters for the coil, globule and 
swollen states. Besides reproducing old results and adding contributions from the 
important fluctuations, our work clarifies and  reinterprets the physical meaning and  
determines the range of validity of some of these previous results. 

Section 2 introduces the model within the same conformational space functional 
integral formalism that has been used to describe the theta point and good solvent 
regimes. Self-consistent field theory and  the equivalent renormalised perturbation 
expansions are introduced. Approximations are established which are necessary to 
reduce these equations to those postulated previously, as ‘mean field theories’ of 
polymer collapse. Deficiencies of these approximations are indicated. The inability 
of treating the fluctuations systematically by these methods and the necessity to correctly 
define the stability criteria lead us to introduce an equivalent field theory formulation 
in § 3 in which the mean field and fluctuation contributions can clearly be separated. 
Exact solutions for the spherical globule are obtained in one dimension and are used 
to construct reasonable approximations in d dimensions when the globule radius is 
large compared with the thickness of the surface layer. Calculations are provided for 
the free energy and coil radius which are shown in § 5 to be unaffected by the 
contributions from fluctuations, except in the region of the coil-globule transition. 
Two stability conditions are derived for the transition temperature, depending on the 
magnitude of the three-body interaction parameter, and  the thermal excitations of the 
globule are approximately calculated. The computed transition temperature and coil 
and globule free energies are used in § 6 to evaluate the specific heat of the collapse 
transition. The crucial role of the three-body interaction parameter (as well as other 
non-universal terms in the free energy that have previously been neglected) in determin- 
ing the order of the transition is manifested by the calculated heat of transition. 
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2. Description of the model 

The same model is used here as for the theta point domain (Kholodenko and Freed 
1984a, b). The dimensionless 'Hamiltonian' is taken to be 

H[C(T)]=f dT I C ( T ) [ ~ + ( ~ ! ) - ' ~ ~  loN dT loN dT' 8[C( 7 )  - C( T ' ) ]  loN 
+ ( ~ ! ) - ' W O  I,*d? loN d?l lON d T " 8 [ C ( 7 ) - C ( T r ) ] 8 [ C ( T ) - C ( T " ) ] ,  (2.1) 

where C ( T )  represents a continuous chain conformation in d-dimensional space, T is 
the contour variable, T E [0, NI, c =  dc /d r  and go and wo are two- and three-body 
coupling constants, respectively. The system of units is defined by the relation C( T )  = 
(d/1)'l2r(T) where I is the effective step length, and r ( 7 )  is the spatial position of the 
polymer segment located at the contour position T. The model (2.1) is of a polymer 
without a detailed specific structure in the collapsed state, so it is insufficient for 
describing different globule phases and the transitions between them. 

Dimensional analysis of the model (2.1) is straightforward and was given previously 
(Oono et a1 1981, Kholodenko and Freed 1983a). If L is some, as yet arbitrary, length 
scale and [ T I  designates the dimensions of T then [T] = [l] = [NI = L, [c] = L''2, [g] = 
L(d-4)/2 and [w] = Ld-3 .  

The fixed end-vector partition function is defined as 
c (  N ) = ( d / / ) ' " R  

WC(.r)l exP{-H[c(T)l}. (2.2) 5 c ( O ) = O  
G ( R ,  N ;  g, w )  = 

A perturbation treatment of (2.2) is generated by expanding the second and third terms 
of (2.1) from the exponent of (2.2). This expansion is conveniently represented 
diagrammatically using the rules described in Kholodenko and Freed (1983a, 1984a). 
The lowest-order expansion in go and wo is depicted in figure 1. 

,-r. - _  
-=-+U+ , I  \ + ... 

l a )  

-=-+o+cy,+... 
ibl  

Figure 1. Lowest-order terms in the perturbation expansion for the fixed end-vector partition 
function (2.2) in (a)  the 'time' representation and (b)  the 'space' representation. The 
diagram rules are given in Kholodenko and Freed (1984a). 

2.1. Self consistent field or renormalised perturbation approximation 

When the dimensionless Hamiltonian (2.1) is taken in the limit of a vanishing cut-off, 
the perturbation calculations encounter singularities which must be removed in a 
consistent way by a renormalisation procedure. If the renormalised expansion para- 
meters are not small in some sense, then the perturbation expansion is of no use. 
However, the diagrammatic analysis allows, in principle, the investigation of arbitrary 
orders of perturbation theory. Following Dyson (1949) we may introduce the 'renor- 
malised' Dyson equation, depicted in figure 2 where the box with the letter M inside 
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Figure 2. Dyson’s equation for the fixed end-vector partition function (2.2). The heavy 
line is the full G, the light one is Go, while the box designates the ‘mass’ operator. 

defines the ‘mass’ operator. Dyson’s equation for the fixed end-vector partition function 
(2.2) is given analytically as 

G(R,  N) = Go(R, N) + JON d r  1; dT’ 5 dr’ dr“  Go(R, r ‘ ;  N - 7) 

x M ( r ’ ,  r”: T-T’)“~’’, T ) .  (2.3) 

Here M is the full mass operator, i.e. the sum of all compact irreducible diagrams, 
and go and wo need not be small. (The explicit dependence of M on coupling constants 
go and wo is omitted for simplicity.) The free propagator Go satisfies the differential 
equation (Freed 1972) 

(a/aN-fV*)GO(R, N ) =  G ( R ) S ( N )  (2.4) 

in the chosen system of units. Applying the operator ( a / d N - f V 2 )  to both sides of 
(2.3) produces the equivalent integro-diff erential equation 

(a/aN-;V*)G(R, N ) = S ( R ) G ( N ) +  d r  d r M ( R , r ;  N-T)G(r ,  7) .  ( 2 . 5 )  loN c 
When R # 0 and N # 0 the delta functions in (2.5) may be neglected, but in the final 
analysis the delta functions and the Green function character of G(R, N) must be 
taken into account. 

Equation (2.5) is of no use unless the mass operator is specified. This can only be 
done within some approximation scheme. An example of the first-order renormalised 
approximation to M has been considered by us (Kholodenko and Freed 1983b) in the 
description of the strong coupling limit of Feynman’s polaron problem. By analogy 
with that work, the leading approximation to M is depicted in figure 3. Comparison 
between figure 1 and figure 3 shows that we have simply replaced the internal zeroth- 
order propagators in the second and third diagrams on the right-hand side of figure 1 ( a )  by 
the full propagators. Within this approximation (2.5) is reduced to the simpler nonlinear 
form 

(a/aN-$V*)G(R, N ) - g  dTG(R,R;  N - r ) G ( R ;  7) loN 
f N  r r  

+ W  Jo dT J dT’ G(R, R ;  N-r’ )G(R,  R ;  T‘ -T)G(R;  T )  
0 

= S ( N ) G ( R )  (2.6) 

and g and w are interpreted as some sort of renormalised interaction parameters. Since 

M =  ‘ j + /  I 1 

1 2 

Figure 3. First-order renormalised perturbation theory (same as self-consistent field) 
equation for the mass operator. 
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our interest lies in attractive two-body interactions, a minus sign is introduced and for 
attractive interactions g is defined as g > 0. The approximation (2.6) also follows upon 
introduction of a Markovian self-consistent field formulation to (2.2) as given (Freed 
1972) for the case where w = 0. 

2.2. Previous assumptions of ground state dominance 

Lifshitz et al(1978) assume that the approximate Green function G in (2.6) can further 
be approximated by the so-called approximation of ground state dominance, 

G (  R, R' ;  T )  P( R ) P (  R')  exp( TE) (2.7) 

with E a ground state energy per unit length of polymer. This approximation is 
motivated by the belief that the spectrum of G has a low-lying discrete portion, so the 
lowest (largest) eigenvalue must dominate. These previous works do not test the 
self-consistency of the assumption (2.7). This important question is addressed below, 
where it is shown that much of this previous work must be reinterpreted. The use of 
(2.7) in (2.6) reduces the latter to 

( E  - i V 2 ) P ( R )  - g N P 3 ( R )  +4wN2'P5(R)=0,  R # 0.  (2.8) 

'P*N-'/2P (2.9) 

If we redefine the function P by 

and assume that ' P ( R )  is real, then equation (2.8) is converted to that postulated ad 
hoc by Moore (1977) 

( E  - f V 2 ) P ( R )  - g P 3 ( R )  + f w P 5 ( R )  = 0, R # 0. (2.10) 

Unlike Lifshitz et a1 (1978) our derivation of (2.10) does not invoke any thermodynamic 
analogies or assumptions like the 'polymer chain is replaced by a set of broken 
monomers' etc. The ansatz (2.7) is valid only in the limit T +  a, but (2.6) contains 
integrals over all T,  so the validity of the assumption (2.7) must be tested. 

2.3. The full self-consistent Green function 

Alternatively, define the Laplace transform of a general function f ( N )  by 

d N exp( - s N )  f ( N )  

and its inverse by 
r 

f ( N )  = (27ri)-' J ds exp(sN)F(s) ,  
C 

(2.1 1) 

(2.11a) 

with C the usual Laplace contour. Then, by applying the Laplace transform to (2.6) 
we obtain 

( s - - V 2 ) G ( R ; s ) - g G ( R ,  R ; s ) G ( R ; s ) + w [ G ( R ,  R ; s ) 1 2 G ( R , s ) = 0 ,  R # 0. 

(2.12) 

Equation (2.12) can be made to resemble (2.10) by expressing the Green function in 
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the form 

where R,  is the greater of R and R', VI, and Y< satisfy the appropriate boundary 
conditions for large and small [RI separately, and the Wronskian is defined to be unity. 
In contrast to the ansatz (2.7) where T is assumed large, equation (2.12) combined 
with (2.13) is an exact representation of the first-order renormalised perturbation theory. 

In general, the Green function has a spectral expansion 

which when Laplace transformed is converted into 

G(R, R ' ;  S )  = ( E , - s ) - ' v I , ( R ) Y : ( R ' ) .  f. 

(2.14) 

(2.15) 

In contrast, the assumption (2.7) just gives 

G (  R, R' ;  s )  = ( E  - s)-'VI(R)Y*( R'),  (2.16) 

where the subscript n = 0 is dropped. The assumption (2.7) is invalid if the solutions 
to (2.12) and (2.13) cannot be represented in the simple form of (2.16). In § 4  we 
provide an exact solution for G(R,  R, s )  in one dimension and an approximate three- 
dimensional one which demonstrates the invalidity of the simple model (2.7) used as 
the basis of previous mean field theories because the solutions display a continuous 
spectrum as a function of s. A difficulty with the assumption (2.16) is readily apparent 
by rescaling the function VI+  (E -s)"*VI whereupon (2.16) and (2.12) reduce to (2.10) 
with the substitution E +. s. Hence, VI depends in a rather non-trivial fashion (see § 4) 
on s in contrast to the assumption in (2.16). 

Equations (2.12) and (2.13) are free of unwarranted assumptions and can be used 
as the basis for our discussion. However, this mean field or renormalised perturbation 
approach suffers from a number of serious deficiencies. Firstly, it is unclear as to how 
corrections are to be incorporated apart from just evaluating successive orders of 
diagrams and investigating the conditions under which the corrections are small. A 
full theory requires the calculation of the contributions from fluctuations in the globule 
shape. The validity of the description of the globular state is dependent on haying the 
fluctuations small enough and on explicitly satisfying conditions for the stability of 
the globule state. The dominant fluctuation terms are not readily apparent to us using 
this renormalised perturbation formulation. In addition, it is unclear to us how to use 
the self-consistent field method to determine the conditions for the stability of the 
globular state and thereby to locate the coil-globule transition. 

These important questions are addressed in the following sections by employing a 
field theoretic formulation which is fully equivalent to the use of (2.1) and (2.2) but 
which permits us systematically to determine the mean field results, the contributions 
from fluctuations, and the conditions for stability of a globular phase. The mean field 
equations are like (2.10) with E + s  and slightly different coefficients. The solutions 
do not, however, conform with the previous assumption (2.16). 
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3. Field theoretic description for the case of coil-globule transition 

In our treatment of the theta point (‘tricritical’) region for polymers (Kholodenko 
1984a, b) we show that the Laplace transform of the distribution function (2.2) can be 
associated with the n + 0 limit of the O( n )  component d4 - #6 field theory as follows: 

n 

G(R,  0; s) = lim K I N - ’  9[@]@i(R)@,(0) exp(-S[@]j 
n-0 I = ,  

where the action S is given in d-dimensional space as 

S[@] = f  ddx [f(V@)2+s@z+(g/4)(@2)2+(w/24)(*2)3] (3.2) 5 
and 

n 
X =  9[@] exp(-S[@]). 5 a2= 1 a;, 

1 = 1  i = l  
( 3 . 1 ~ )  

The limiting procedure n + 0 is to be taken at the very end of the calculations. The 
coefficients of the ( @ 2 ) 2  and (@2)3 terms in (3.2) are chosen to provide identical results 
as from the conformation space functional integral (2.2). 

Our previous theta point region calculations take w to be positive and g small, 
while the collapse transition occurs for g larger and negative. Small g enables the use 
of perturbation expansions, but when g exceeds a certain value (Kholodenko and 
Freed 1984a) the perturbation expansion is invalid. Then an alternative non- 
perturbative method is required to describe the globular state. It is not self-evident a 
priori that the coil-globule transition must take place within or at the edge of the theta 
point domain because of the finite size of the system under consideration. It is only 
when the polymer length N tends to infinity that a standard first-order transition could 
possibly appear. In the spirit of our previous works we treat the case of Jinite N 
directly. The asymptotic limit of N + 00 is only considered at the end of the calculations. 

When g or w or both are not small and a perturbation expansion is inapplicable, 
two types of non-perturbative approaches are available as follows. 

(a) Analyse the higher-order terms by use of the Schwinger-Dyson equation in 
analogy with the analysis in 9 2. 

(b) Use the saddle point approximation to evaluate the functional integral (3.1). 
It is instructive to discuss both approaches to determine the approximations required 
to produce a mean field theory similar to (2.12). 

3.1. General theory 

Following BrCzin et a1 (1976) let J ( x )  be an arbitrary function; then use of the identity 

produces the equation 
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where the generating functional Z ( J )  as defined as 

) Z ( J )  = N-’ 9[@] exp( -S[Q,] +I ddxJ (x )  - Q , ( x )  (3 .5)  

and 9[@] is defined from the relation S[O] = ddx B[O(x)]. 
The normalisation factor X is defined from the condition 

Z ( J = O ) =  1. (3 .5a )  

Equation (3.4) gives rise to the Dyson-Schwinger hierarchy of equations which are 
obtained by subsequent functional differentiation of (3.4).  Introducing the n + 0 pro- 
cedure into (3.4) produces the equation of motion for the longitudinal Green function 
as 

( S  - fV’)Gl!’(x,  y ;  S) - ( g / 2 ) G i f l ( ~ ,  X, X, y ;  S)  + ( w / ~ ) G ~ & ( x ,  X, X, X, X, y ;  S)  = S(X -y) 

(3.6) 

where equation ( 3 . 5 ~ )  is used and, by definition, 

G!i”(x, Y ;  S )  = [ ( a / S J i ( X ) )  (S /SJ~(Y))~(J ) IJ=O 

etc, for the higher Green functions setting J = O  in (3 .6) .  It is found that equation 
(2.12) (not (2.10)) can be obtained from (3.6) if we introduce the Markovian decoupling 
(Freed 1972) of the G(*) and G(3)  propagators, sum over i indices, and formally define 
the n + 0 limit. Use of standard field theory, therefore, permits us to study the mean 
field and higher-order terms in a systematic fashion. 

3.2. Saddle point approximation and fluctuations 

Since our prime interest lies in determining the mean field and the contribution from 
fluctuations about the mean field, it suffices to evaluate the functional integral (3 .1)  
by the saddle point method with subsequent expansions about the saddle point. The 
saddle point solution is determined from the equation 

SS[Q,]/ SQ,14,40, = 0.  (3.7) 

kf(@,) = S 2 s / S @ i 8 @ j l ~ = ~ ,  (3.8) 

The stability of this solution is determined from the requirement that the operator 

has a spectrum of only positive eigenvalues. Because of the n + 0 limit, we only need 
to calculate the longitudinal part of the operator (3.8) associated with the ‘symmetry 
breaking’ direction of Q,, in O ( n )  space. 

Introducing the definition Q, = 9, + 6 0  into both the numerator and denominator 
of (3.1) and ( 3 . l a ) ,  expansion in powers of S Q ,  and retention of only terms through 
(Sa)’ in the usual fashion yields 

G(R,  0, s) =Q,,(R, s)Q,,(O, s)  + G,(R, 0; s) +. . . (3 .9)  

where G,(R, 0; s), the contribution from Gaussian fluctuations, is the Green function 
of the operator M ( @ J  and Q,, = n@, where n is a unit vector such that n2 = 1. Hence, 
@, is just the ‘classical’ solution to (3 .7)  for the one-component case as explained in 
0 4 .  The quantity Q C  represents a ‘broken symmetry’ phase which is effectively the 
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mean field solution for the collapsed state. The finite size of the polymer implies that 
this mean fleld solution is of necessity inhomogeneous as explicitly demonstrated by 
the calculation of @, and G, in 0 4. 

4. Saddle point calculations 

Brizin et a1 (1977) and Zina-Justin (1981) show in other contexts that the saddle point 
solution for O(n)  theory can be obtained in terms of that for a one-component field 
theory with the action (3.2). The one-component field saddle point equation (3.7) gives 

(~-4V~)@,-(g/2)@: + ( ~ / 8 ) @ . f = 0 .  (4.1) 

Once ac is determined from (4.1), then the saddle point for the n-component case is 

a, = n@, (4.2) 

where n2  = 1. 
Equation (4.1) is virtually identical to the ground state dominance mean field 

equations (2.10) with E - s  and some minor changes in numerical coefficients. The 
change E c, s with s a Laplace variable, however, has important implications. Ignoring 
differences between 9, and Y< also makes (4.1) the same form as (2.12). This 
correspondence between the field theory and chain space formulations is expected 
from our previous work on the good solvent (Kholodenko and Freed 1983a) and theta 
point (Kholodenko and Freed 1984a) regions. 

4.1. Solution of mean jield equations 

We consider only the spherically symmetric solution to (4.1) for a,. When the globule 
is in its ground state, surface tension prevents the formation of mean field configurations 
departing from spherical. The spherical solution to (4.1) satisfies the equation 

d r  (4.3) 

where d is the dimension of space and 

V(@,)=s - (g /2 )@f+(w/8 )@2.  (4.3a) 

The dimensional analysis of 0 2 enables us to introduce the dimensionless quantity 
x = s”2r. Defining Q C =  ( 2 ~ / g ) ” ~ x ( 2 ” ~ x )  converts (4.3) to 

where a = sw/2g2. 
We specialise to d = 3  and note that as x+co the solution x(x)+O because the 

globule is a finite system. For large globules the outer regions of x can be studied by 
neglecting the d/dx term provided that the solution ~ ( x )  dies off for large x faster 
than some power of x. In fact, the action (3.2) is finite only if x2x3+E + 0 as x + 0 for 
any E + O+. Straightforward analysis of (4.4) in the x + 00 limit precludes a power law 
type solution, so the neglect of the x-’d/dx term here is justified. Hence, for x +  CO 
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the solution to (4.4) is the same as that of the one-dimensional problem 

(d2/dx2)x(x) = 1 - x 2  + ax4), x + w .  (4.5) 

When x + 0, an analysis of (4.4) shows that the only consistent solution is one for 
which ,y is a constant. This homogeneous solution follows from (4.4) as 

~ ~ = A ~ ~ ( 2 ~ ~ ) - ~ [ 1 * ( 1 - 4 a ) ~ / ’ ] ,  x s xo. (4.6) 

Both signs provide possible solutions to (4.5), but in § 4.4 the lower sign is shown to 
correspond to a globular state. When the globule is large, i.e. N is large, and when 
the inhomogeneous surface thickness is much smaller than the globule radius ro= 
s-’/2xo, our approximate three-dimensional solution is then obtained by matching (4.6) 
at x = xo onto the solution to (4.5) of 

x2(x) = a[(f+4a)’-fa]-’, x ’ xo, (4.7) 

where 

a = IBI exp[(x - ~ ~ ) / 2 ” ~ ] ,  B=A-2{2+2[(~A4/3)  -(A2/2) + 1]’/’-A2/2}, 

and xo is an integration constant related to the globule radius. The matching condition 
is that x2 or (4.7) satisfies x2(xo) = A’. As ,y + OC) the solution (4.7) indeed satisfies the 
condition x ~ x ~ + ~ ~  + 0. When the surface layer thickness 6 becomes comparable to the 
globule radius ro, the (2/x)(d/dx) term in (4.4) should be retained and an improved 
solution determined. Since this procedure probably requires numerical analysis, we 
continue to use (4.6)-(4.7) in this transition zone as a zeroth-order approximation. 

It is instructive to compare our solution (4.6) and (4.7) with that of previous workers. 
First of all, the condition of ground state dominance (Lifshitz et a1 1978, Moore 1977) 
has not been invoked. Consequently the solution (4.6) and (4.7) is formally valid for 
any s. The spectrum is continuous without a discrete bound state. Unlike the variational 
ansatz of Moore (1977) under the assumption of ground state dominance, our solution 
is exact in one dimension and requires the knowledge of only one parameter xo in 
three dimensions. (Moore introduces four parameters for d = 3.) 

Our solution (4.6)-(4.7) alone does not provide any indication of how xo is to be 
determined. However, in § 4.4 below it is shown that both xo and the sign in (4.6) are 
uniquely specified by the imposition of additional physical constraints. It turns out 
that xo depends upon the Laplace parameter s (for given values of g and w ) .  Physical 
quantities after inverse Laplace transformation must be real, but in s space it is not 
absolutely necessary for quantities to be real. However, if A2 in (4.6) is required to 
be real, restrictions are imposed on the allowed range of s with a bound coinciding 
with the ‘ground state energy’ of Moore (1977). In summary, we conclude unlike 
Moore (1977) and Lifshitz et a1 (1978) that the mean field solution (4.6) and (4.7) is 
not a dominant ground state contribution coming from the discrete spectrum of the 
self-consistent mean field equation. In fact, the solution (4.6)-(4.7) determines a unique 
ground state for the globule as is demonstrated in §§ 5.1, 5.2 where we show that it is 
the surface fluctuations which contribute to a discrete spectrum of thermal excitations 
of the globule. 

4.2. Globule free energy and density 

The parameter xo is found by considering the calculation of the polymer free energy 
and density. Using the functional integral formulation of § 2 it follows that the 
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Helmholtz free energy F for the polymer chain is represented in terms of G ( r l ,  r2, s )  
as 

-F=ln kT [.-I( I ddrl I ddr2 G ( r l ,  r2;  s))] (4.8) 

where T is the absolute temperature, k is Boltzmann's constant and 2'-I is the inverse 
Laplace transform operator as defined in (2.1 la ) .  

In critical phenomena with n # 0 the classical term S[@,] dominates the free energy, 
so the polymer case displays an essential difference in this respect. The monomer 
density at the point R is given in a Hartree (self-consistent field (Freed 1972)) 
approximation in terms of G as 

with G the full Green function (3.8). By construction of (4.9) the density has the 
normalisation 

(4.10) 

It is this normalisation constraint which is used in 0 4.4 to determine the globule 
'radius' xo. Combining (4.9) and (4.10) and taking Laplace transforms of both sides 
of the equation 

loN d T  I ddR I ddrl I ddr2 G ( r , ,  R; N -  7)G(R,  r2, T) = N ddr, G ( r l ,  r2, N )  

(4.1 1 )  
we obtain the s-space normalisation condition 

a 
as 

l d d R  ddrl I ddrZ G ( r l ,  R ;  s)G(R, r2;  s )  = -- ddrl I ddr2 G ( r l ,  r,; s ) .  (4.12) 

The Green functions in (4.8), (4.9) and (4.11) are presumed to be exact and to have 
an expansion in terms of spherical harmonics Y,,(n). Introduction of this expansion 
yields I d3rl I d3r, G ( r l ,  r,; s) = dr, r: do, 1 GImr,,,,,(rl, rz ;  s) 

Im;/'m' 
(4.13) r r 

so only the spherically symmetric portion of G is required to compute the free energy 
in (4.8). In general, the normalisation condition (4.10) has contributions from the 
non-spherical parts of G ( r l ,  r2; s ) ,  but here we retain the leading spherical portions. 

4.3. Steepest descents Laplace inversion 

It is convenient to express the free energy in the form 

exp(-F/kT) = (2~ri)- '  d3r, d3r2 G(r , ,  r,; s )  (4.14) 
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The complexity of the actual form of G precludes the analytic evaluation of (4.14). 
However, when N is sufficiently large, but finite, it should be possible to approximate 
(4.14) by steepest descents. First of all, it is necessary to calculate the saddle point s*  
which is determined from the solution of the equation 

Inversion of (4.15) produces a solution for s*  in the form s* = f (  N, g, w). Combining 
(4.12) with (4.15) produces the equation 

d3rl d3r2 G ( r , ,  r,; s)  
s = s *  

N = (I d3R d3r,  d3r2 G(rl ,  R ;  s )G(R,  r2;  s)  
~~ 

(4.16) 

It is instructive to evaluate (4.15) and (4.16) using approximations to G of increasing 
accuracy. First we consider the leading mean field part of (3.8), and later the fluctuations 
are included. Insertion of G(rl ,  r2; s)  = QC(rl)Qc( r2) into (4.16) simply yields 

(4.17) 

where @.f(R,  s) is given by (4.6)-(4.7). Inversion of this equation gives xo as a function 
of s* and, of course, N, g and w. 

Moore (1977) has postulated equation (4.17) for s*, the ‘ground state energy’. The 
approximations inherent in obtaining (4.17) are clear in our analysis. In order to 
further reduce (4.17) to the result of Moore, the tail part of x2 given by (4.7) is dropped, 
and only (4.6) is retained. For the special case a, = f ,  related to Moore’s ‘ground state 
energy’, A’ in (4.6) is unique, and the evaluation of (4.17) readily yields 

N = ( 4 ~ / 3 ) r i ( 2 g /  w),  am=% (4.18) 

where ro is the globule radius. Converting back to ordinary units, (4.18) is equivalent 
to 

ro= ( 3 w N / 8 ~ g ) ~ ’ ~ ( 1 / 3 ) ” ~ =  (3N/4.rrpc)”3(l/3)”2, a, = t, (4.180) 

where the globular ‘density’ of Lifshitz et a1 (1978) is defined as pG=2g/w. The 
variable pG and a chemical potential with respect to the addition of monomers to a 
polymer are the basic parameters of the theory of Lifshitz et a1 (1978). Since these 
quantities are not directly physically measurable, there is no way of testing their theory. 
Our approach, by contrast, uses the traditional parameters g and w whose values and 
temperature dependence can, at least in principle, be determined in the theta point 
and good solvent regions. When g + 0, the globule radius tends towards the unphysical 
limit ro-,oo. Equation (4 .18~)  is clearly invalid for g+O because the globule-coil 
transition must intervene before g gets too small in order that ro remain finite for N finite. 

Now we consider the full solution for @ J R ,  s) along with steepest descents Laplace 
inversion to exhibit how similar results with somewhat different physical interpretation 
are obtained with the more rigorous approach. These methods are then used in 0 5 to 
include the effects of fluctuations. Let so = g2/2w, so that 0: is written for 0 s  x S xo 
as @.f = (2g/ w){ 1 f [l - ( S / S ~ ) ] ’ ’ ~ } .  In order that @:be real it is necessary that 0 C s S so. 
The saddle point is written in the form s* = so- Ss, defining 8s. A full analysis shows 

I 
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Ss to be much smaller than so. Before providing the details, it is instructive to analyse 
the implications of the result (4.18) upon the full solution (4.7). 

In terms of r and ro the parameter a in (4.7) is 

a = IBl[(g2/4w)(so/s)(r- rO)I-= PI exp[(r- r0)/51, 

where the screening length 5 is defined in ordinary units as 

t2 = (s/so)(4w/g2)1/3 - 81/3gpG. (4.19) 

This screening length for s = so coincides with that introduced by Edwards (1966) (see 
also de Gennes 1979 and Freed 1983) for semidilute solutions. The definition (4.19) 
has the screening length 6 diverge when g+O. The solution (4.7) associates this 
screening length with the thickness of the globule surface layer, so our approximation 
is well defined only when the ratio of the globule surface thickness 5 to its radius, 

(,$/ro)2a w ' / ~ ~ - ~ / ~ N ~ / ~ ,  s 2: so, (4.20) 

is much smaller than unity. Hence, equation (4.18) is a good approximation when 

9 s = so. (4.21) 

When 6 -  ro, we expect to have the polymer in or near the coil-globule transition 
region. Corrections from the (2/r)(d/dr) term in ( 4 . 3 ~ )  are then necessary, but we 
use (4.6)-(4.7) as a zeroth-order approximation because improved solutions require 
numerical analysis. 

>> w 1 / 4 ~ - l / 2  g 

4.4. Determination of saddle point s* 

Assume that (4.21) is satisfied and approximate the integral in (4.15) by the 
homogeneous portion of QC for r < ro to give 

- N  = (a/as) ln{(4~r i /3)~(2g/w)[ l  * ( I  - ( S / S ~ ) ) ' / ~ ] } ~ ~ = ~ *  

d ln  ro(s*) 1 1 1 
(4.22) 

where the previously noted dependence of ro on s* is explicitly included. Within the 
same approximation the normalisation condition (4.12) produces 

6 d In ro(s*)/ds* = - (4~r i /3) (2g/  w){ 1 [ 1 - (S*/S~)] ' /~}  

= 6  T- 
ds* 2 ~ 0  [ I  - ( s* / s~ ) ] ' /~  (1 *[l - ( s* /s~) ] ' /~}  

*{2SO[l - (S*/SO)]'/'[l * (1 - (s*/s0))'/2]}-'. (4.23) 
Combining (4.22) and (4.23) to eliminate d In ro(s*)/ds* leads to 

N = (4~/3) r i (2g/w)( l*[ l  - (S*/S~)] ' /~}.  (4.24) 

Applying d/ds* to both sides of (4.24) generates after some algebra 

d In ro(s*)/ds* = *{6s0[l - ( s * / ~ ~ ) ] ' / ~ [ l  f ( 1  - (S*/S~)) ' /~]}- ' .  (4.25) 

Substituting (4.25) back into (4.22) finally gives an equation for s*  in terms of N and 
so only as 

-N=*{2s,[l -(s*/s0)]'/2[1 *(1 -(s*/so)]'/2]}-'. (4.26) 
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Given that N is non-negative, the only possibility in (4.26) involves the lower sign, 
corresponding to the solution in (4.6) with the negative sign. In addition, s* is required 
to be real and less than or equal to so. These considerations imply that (4.26) becomes 

(4.27) 2Ns0 = [ 1 - ( s*/s0)]-"2{ 1 - [ 1 - ( s*/s0)]1'2}-'. 

The solution of (4.27) for large N produces the leading terms 

S *  = sO[l - ( 16N2s$' +. . .I, (4.28) 

verifying our statement that Ss<< so and that the condition (4.21) holds for a globule 
with a narrow surface layer. Insertion of (4.28) into (4.24) and use of the minus sign 
enables the determination of ro as 

(4.28a) 

Equation (4.28), condition (4.21) and the homogeneous portion of @: produce our 
initial estimate of the globule free energy as 

(4.29) 

This agrees with the final conclusion of Moore and Lifshitz et al, but for somewhat 
different physical reasons. 

The remainder of the steepest descents calculation requires a demonstration that 
the function exp{ln[jj d3r, d3r2 G(rl ,  r,; s)]  + s N }  has a maximum at s = s*, so we now 
show that 

ro(s*) = ( 3 N w / S ~ g ) ' ' ~ (  1 + w/6Ng2 +. . .). 

- F /  kT = soN +O(ln N) -- g2N/2w. 

(4.30) 

Using (4.22), (4.25) and (4.27) it is found that 

= - { ( S O / ~ S ) ~ ' ~ - [ ~  - (6s/S0)"~]"}/4(S06s)l /~[1 - ( 8 S / S , ) ] ' / 2  ( 4 . 3 0 ~ )  

with 6s = so-  s* > 0 given in (4.28), thereby satisfying the requirement of (4.30) of a 
minimum. The contribution of ( 4 . 3 0 ~ )  to the free energy from a steepest descents 
integration is of the order of In N and can be ignored with respect to (4.29). 

Substitution of s* from (4.28) into (4.7) and neglect of the 0(N2) correction term 
converts the tail of Q C  into the form 

(4.31) 

where (Y +; in the definition of A' in (4.6). When Ir - ro(/5 >> 1, equation (4.31) reduces 
to 

x2=4{1 +exp[(r- ;0)/5]}-1=2{1 -tanh[(r-io)/25]}, (4.32) 

where ;o differs from ro by an additive constant. The last form in (4.32) is identical 
to the interfacial profile of the van der Waals theory of liquid-vapour phase transitions 
(Widom 1981) which indicates the close relationship between the coil-globule and 
liquid-vapour phase transitions, an analogy we consider further in 0 6 where the order 
of the transition is discussed. 
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wur analysis of the mean field solution and steepest descents integration establishes 
only necessary but nor suficient conditions for the existence of a saddle point (i.e. 
mean field) solution of (3.6). Sufficient conditions emerge from a treatment of the 
contributions of the fluctuations to the free energy. 

5. Stability of globule and thermal excitations 

Globule stability is determined, in part, by the condition that the operator M ( O C )  in 
(3.7) be non-negative, i.e. that its eigenvalues all be positive. The solution for Qc now 
enables this question to be studied in detail along with the determination of contribu- 
tions from the fluctuation term G, in (3.8) to the globule free energy (4.8). 

Because of the n + O  limiting procedure, it is only necessary to consider the 
longitudinal part of the operator M which follows from (3.2) and (3.7) as 

M ( @ , )  = [+v’ + s  -:g@:(r) + & v @ t ( r ) ] ~ ( r -  r ’ ) .  (5.1) 

This follows upon writing M in terms of the longitudinal ML and transverse MT 

parts as MIJ = n,nJM, - nlnJ)MT. The Gaussian fluctuations give M ; ’  and MT1 
contributions to (6QSQ), and only the former survives in the n + 0 limit. 

The mean field Q: is given in (4.6) and (4.7) with xo=s ’ /2 ro  and ro the globule 
radius to be determined from the saddle point equation (4.15) and normalisation (4.1 1).  
When the globule is stable, it is to be anticipated that fluctuations provide small 
contributions, and ro( s*) with fluctuations should depart little from (4 .28~) .  Hence, 
one of the purposes of this section is the determination of the conditions under which 
Q, and s* of § 4 are qualitatively unchanged by the fluctuations. 

In the traditional theory of phase transitions, the eigenvalues of M ( Q c )  describe 
the possible excitations of the system, whereas here s is a Laplace variable, so this 
simple interpretation must be applied with some caution. It is only for values of s 
contributing to physical observables that M ( Q c )  be required to be a non-negative 
operator. For large N it is only necessary to consider s = s*, greatly simplifying the 
analysis. 

We begin by assuming that the globule has a surface thickness 6, which from (4.7) 
is generally represented as 

(5.2) 5’ = 2/s  3 (s/so)(4w/g2), 

and is small compared with the square of the radius ro. Taking ro from (4.24) with s* 
replaced by s and combining it with (5.2) leads to the condition ((/ r0)’ << 1 for a narrow 
surface layer of 

( 5 . 2 ~ )  

When s=s*=so ,  then ( 5 . 2 ~ )  reduces to the inequality (4.21) apart from numerical 
factors. Our restriction S2/ri<< 1 in ( 5 . 2 ~ )  is imposed in order that (4.6) and (4.7) be 
a good approximation. If 6-  ro, the same general methods can be pursued, but the 
approximate solution (4.6)-(4.7) becomes inadequate, and other more accurate sol- 
utions for @, are required, probably necessitating numerical methods. The spectrum 
of M (  Qc) and the contribution from fluctuations are, therefore, accurately studied 
under the conditions of ( 5 . 2 ~ )  with s 5 so, while when 5- ro in the transition region, 
our calculations represent only a qualitative description. 

gN1l2>>  ~ ‘ / ~ ( 6 4 ~ / 3 ) ( ~ 0 / ~ ) ” “ ( 1  - [ I  - ( s / s ~ ) ]  1/2  } l / 2  . 
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For s = s* the substitution of (4.6) and (4.32) into (5.1) for the fluctuation kernel 
produces an operator similar to that used in the liquid drop model of the atomic 
nucleus (Bohr and Mottelson 1974). This analogy between nuclear physics and the 
present problem is somewhat useful. Potentials of this form are known as Saxon-Woods 
type potentials, and they have both discrete and continuum spectra which are often 
approximated either by a square well potential or by a harmonic oscillator potential 
if only the lowest excitations are of interest. In general, the lowest eigenvalue of M ( @ , )  
can also be determined variationally. 

5.1. Stability criterion 

Given the condition t2/r;<< 1 ,  it is permissible to introduce a ‘square well’ approxima- 
tion to aC, taking it to be equal to (4.6) for x d xo and zero for x > xo. This assumption 
leads to the vanishing of (4.3a) for x 2 xo and implies 

(w/8)@:=(g/2)@;-s9 x s xo, (5.3) 
so we can define the quantity 

K ( s ) =  -2[~-(3g/2)@.f+(5~/8)@:! 

= 8s0[l - ( S / S ~ ) ] ’ / ~ { ~  -[1 - ( S / S ~ ) ] ” ~ } ,  x c xo. (5.4) 
A full analysis with (5.4) shows that Ss = so-s<< so, for s in the vicinity of s*, but it 
is much simpler to invoke this as an assumption, showing that the final results are 
consistent. When Ss<< so we find 

K ( s )  = 8 ( ~ 0 S s ) I ’ ~ .  ( 5 . 5 )  

(5.6) 

[ - $ ’ + s ] A , , ( r )  = E,,A,,(r), roSr<03.  (5.7) 

The spectrum of the operator M ( @ , )  then follows from 
I 2  [-,V - t K ( s ) I ~ n ( r )  = E n A n ( r ) >  0 s  r c  ro, 

By analogy with the liquid drop model of the nucleus (Bohr and Mottelson 1974) the 
spherically symmetric ( I  = 0) solutions describe contractions or expansions of the 
globule, and the 1 = 1 terms represent a uniform translation of the globule as a whole. 
Only terms with 13 2 describe surface oscillations. Arbitrary 1 could be treated easily, 
but they naturally yield higher E,, than for 1 = 0, so the evaluation of the spherical 
case is all that is required to ensure E,, > 0 for all n. In the present problem equation 
(4.13) implies that only the consideration of 1 = O  is required. 

Equations (5.6)-(5.7) are supplemented by the boundary conditions that G, is finite 
when r + 0 and Gc+ 0 when r + a. It is clear that (5.6) and (5.7) possess a continuous 
spectrum of eigenvalues for E > s, but we seek to determine when lower discrete 
eigenvalues may violate the stability condition E,,(s)> 0 for s = s*. Standard methods 
for this square well problem can be used to generate the transcendental s-dependent 
eigenvalue equation 

[ 2 ~  +K(s)]’” cot{ro[2~ +K(S)]I’~} = - [ ~ ( S - E ) I ” ’ .  (5.8) 
Note from (5.4) that K > 0 for s < so, but it becomes complex for s > so. Since our 
saddle point s* is real and satisfies s* s so, only the real eigenvalues of (5.8) are 
considered. It is obvious from (5.6) and (5.7) that possible real eigenvalues for K ( s )  > 0 
may arise for E > -K(s ) /2 ,  so stability is not automatically assured. 
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Define x = r0(2E + K)’12>  0 and y = r0[2(s - E ) ] ’ / ’ >  0, so (5 .8)  can be converted 

(5 .9a,  b )  

to the pair of equations 

x2 +y’ = &2s + K ( s ) ] ,  y = -x cot x. 

Specialising to s = so - Ss with 6s << so converts (5 .9a)  into 

x’ + y 2  = 2s0r6[l + ~ ( S S / S , ) ’ / ~ ] .  (5.10) 

Equations ( 5 . 9 b )  and (5 .10)  may be solved graphically, as depicted in figure 4 ,  to yield 
discrete values of E for given g, w and N .  By definition x and y are non-negative, so 
solutions to ( 5 . 9 b )  and (5.10) exist only for x 2 ~ / 2 .  We now consider the conditions 
under which (5.9b) and (5.10) yield E < 0, since this leads also to the stability condition 
E > 0. When E < 0, the definition of y implies y’ > 2ris0 for Ss << so. Hence (5.10) and 
x 2 5712 produce the inequalities 

(5.1 1 )  (77/2) ’S  x2 = 2sori[l + 4 ( 6 s / ~ , ) ’ / ~ ] - y ’ <  8 ~ o r ~ ( S ~ / ~ o ) ’ ~ ’ .  

Figure 4. Graphical solution of (5.9)-(5.10). 

Stability requires the absence of roots for E < 0, and consequently the reversal of signs 
in (5.1 1 ) .  Use of Ss from (4 .28)  then yields the stability condition 

r g s  r 2 N / 8 .  (5.11a) 

Then the value of ro in ( 4 . 2 8 ~ )  converts (5.1 l a )  into 

gN’’’ 3 ~ ( 2 ) ~ / ’ ( 3 /  T). (5 .12)  

I f  6 -  r,, then only a single inequality appears in ( 5 . 2 ~ ) .  Simple Flory-type mean field 
calculations (Ptitsyn et a1 1968) show a perceptible coil-globule transition with a sharp 
drop in coil radius only when w is small, w < 1. When w is small, our condition ( 5 . 2 ~ )  
(even with a single inequality) for 6 <  ro is stronger than the stability criterion (5.12). 

Assuming the condition (5.11a) is obeyed, then equations ( 5 . 9 b )  and (5.10) can 
be graphically solved for the real roots E,, whose number increases as 2s0rg increases. 
When (2s0)”’r0 lies between [nrr /2]  and [ ( n  + 1 ) ~ / 2 ]  for some integer n, there are 
exactly n possible roots. Since $ ( 6 / r O ) s = s ,  = [ ( 2 ~ ~ ) ~ / ~ r ~ ] - ’ ,  the occurrence of more 
discrete levels in the spectrum of M ( @ J  implies a narrower boundary layer for the 
globule. 

5.2. Fluctuations and thermal excitations of the globule 

Given the discrete and continuous eigenfunctions of M ( @ J ,  it is possible to evaluate 
G, of ( 3 . 8 )  from its spectral decomposition. In order to prove that the fluctuations do 
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not appreciably alter s* and measurable properties given the stability conditions, it is 
necessary to determine G, as a function of s, so that s* and ro can be computed from 
(4.15) and (4.16) with the full G of (3.8). Using the square well approximation as 
above, it is straightforward to determine the I = 0 Green function of M(@,) as 

GAr, r’ ; s ) l l= ,  = 2( r2 r<K’’2)-’ sin( r,K ‘ I2 )  cos( r> K ‘I2)[ 1 + y( s) tan( r> K ‘/’)I, 
(5.13) 

r, r‘< ro 

and 

y ( s )  = [ ( K / ~ s ) ’ / ~  sin(rOK’I2) - c ~ s ( r ~ K ’ / ~ ) ] / [ s i n ( r ~ K ’ / ~ )  + ( K / ~ s ) ’ / ~  cos(rOK1/’)], 

(5.14) 

where r> = max( r, r‘), r ,  = min( r, r’), the s dependence of K is not explicitly represen- 
ted, and we drop the tail portion with r or r’> ro since we expect its contribution to 
the free energy (4.14) to be small for [/ro<< 1. 

Integration of G, over d3r d3r’ and inverse Laplace transformation provide contribu- 
tions to the globule partition function of the form estN if G, of (5.14) has poles at 
s = s,. Such contributions from poles physically correspond to the thermal excitations 
of the whole globule from its ground state with N ( s *  - si) the excitation free energies. 
The square well provides some approximation to these excitations coming from the 
poles of equation (5.14) given by 

(2s)”’ = - [ K ( s ) ] ’ / ’  cot{ ro[K( s)]”’}. (5.15) 

Equation (5.15) has a structure similar to (5.8). The graphical solution of (5.15) is 
facilitated by defining h = K1/’(s) /2sA/’  and then inverting to find s = soA(h). It is 
readily determined that h lies in the range 0 s h zs f as s ranges between zero and so 
and that A has two branches A, and A, for s in this range. Let 7 = 2sA/‘rO (7 >> 1 
gives a narrow boundary layer) so the roots of (5.15) follow from 

A( h )  = -& h cot( $I), 

s,/so“ A > ( h ) = f + h 2  +(f)( 1 -4h)”’, 

s,/so’ A , ( h )  =; +h’- (f)( 1 -4h)’”. 

0 6 h s 4 ,  (5.16) 

(5.16a) 

(5.166) 

The threshold for roots is at about 7 -4.9, which gives .f/rols,= 0.57, while for 7 > 
(2n + 1)n or .f/roh= 23/2/(2n + l ) n  there can be up to n roots coming from both 
(5.16a) and (5.166) when they are combined with (5.16). An increase in the number 
of solutions of (5.15) now directly corresponds to increasing the number of globule 
excitations as well as the narrowness of its boundary layer. Note that K ( s )  is real 
only for s < so, so possible real roots lie in the range 0 s si 6 so. The range of h implies 
0 6 A, 6 and as A> s 1. Hence, (5.16a) may yield low-lying excitations (assuming, 
as verified below, that s* = so emerges from the full treatment with G,) when roots are 
obtained from (5.16) and (5.166) for s> = so. However, solution (s , )~ = socannot occur 
because (5.166) implies that A> + 1 only for h = 0. Taking this limit in (5.16) would 
require 7 = -(2)-’’2 which is physically forbidden. Hence, equation (5.16) has sol- 
utions only for si < so. 

When N -* CO, a contribution to the partition function from Y’ 55 @ = ( r 1 ,  s)@,( r2, s), 
involving exp( s * N )  with s* + so as N + 03, dominates over the contributions from the 
globule excitations with si < so. It remains, however, to consider the additional portion 
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of G,, other than the contributions from the poles si, in the saddle point and normalisa- 
tion equations (4.15) and (4.16). Integration of (5.13) over the globule of radius ro(s )  
reduces to 11 d3rl d3r2 Gc(r l ,  r,; ~ ) = 4 ( 4 v ) ~ [ K ( s ) ] - ’ / ~  

[ K ( ~ ) l ’ / ~ r ,  

dy y(sin y - y  cos y )  

(5.17) 

It is possible to evaluate the integral in (5.17) and proceed with solution of (4.15) and 
(4.16) using (5.17) with the contribution of QCQc, but the algebra is very involved, and 
the final results yield s* = sa again when ( 5 . 2 ~ )  is satisfied. It is much simpler, however, 
to demonstrate that (5.17) gives a negligible contribution to the free energy in the 
saddle point approximation of 0 4. 

We simplify the analysis by writing s* = sa- 6s with 6s < sa, so that in this region 
[K(s ) ]” ’ r0 ( ,*  = N-’/6(2)1!2(3 w/8vg)’j3 which tends to zero for fixed g and w as N - ,  00. 

The globule stability condition (5.12) converts this to an inequality 

Jo 
x (cos y + y ( s )  sin y ] .  

(5.18) 

which for small w (Ptitsyn et a1 1968) permits us to take [ K ( s ) ] ’ / ~ ~ , < <  1 to simplify 
(5.17) to 

G,= [2(4~)’r:/45][1 + O ( K r i ) ] ,  (5.19) 

where y ( s )  from (5.19) is taken as non-singular to treat these contributions from G, 
not involving the excited states of the globule. 

Combining (5.19) with our previous mean field portion in braces in the first line 
of (4.22) leads to 

IJ 

JJ  d3rl d3r2[~,(*l, s)+,(r2, s) + ~ , ( r l ,  r 2 ;  S)I 

45 r, 
(5.20) 

The estimate of the added term from G, is reduced to the calculation of the ratio of 
its contribution to that involving the (SS/S,)’/~. This ratio of (Ss/s,)’/’/( w/45gro) is 
approximated by use of our previously evaluated s*  in (4.28) to give 

where the last inequality follows from the condition ( 5 . 2 ~ )  of a narrow globule surface 
region compared with r,. Hence, when t2<< rg, the fluctuation part from G, makes a 
negligible contribution to the globule free energy, so its alteration of s” is ignored. At 
the limit of stability (5.12), the ratio on the left-hand side of (5.21) becomes of the 
order of unity, and fluctuations provide a non-negligible contribution, as expected in 
the coil-globule transition region. 

Our calculations employ the approximation throughout that the surface thickness 
be much smaller than the homogeneous density inner globule radius r,. The theory 

can be applied for 5 comparable to r,, but in this case an improved approximation to 
(4.6) and (4.7) must be invoked, perhaps using a variational approximation based on 
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(3.6) in order to include corrections from the [(d- l ) / r ] (d/dr)  term of (4.3). Tail 
portions of @, would then also be required in evaluating 51 d3rl d3r2 @,(r , ,  s)@,(r2,  s), 
a task which is possible, but tedious, analytically with (4.6) but which probably becomes 
prohibitive with an improved solution. In addition, the above estimate of the fluctuation 
part 5jd3r, d3r, Gc(rl, r,; s) indicates that it is not negligible at the limits of globule 
stability. It is possible that at this stability limit poles in G, lead to a quasi continuum 
of low-lying excitations which ultimately destroy the globule stability in the transition 
region. Hence, the treatment of the transition region, where 6 -  r,, follows by the 
methods developed here, but the analysis is much more involved. 

6. Thermodynamics of the coil-globule transition 

Finite polymers, i.e. finite N, cannot have a true phase transition, a situation already 
well understood for the helix-coil transition which only becomes a first-order phase 
transition when N + m .  Hence, the ‘transition’ is a smeared one over a range AT 
Inside this transition zone, we have 6 - r, and some rather complicated algebra. 
However, for N large the size of the transition zone AT must narrow, and it is 
meaningful to estimate the properties of the transition by comparing the coil and 
globule at either end of the transition zone. This procedure departs from the traditional 
approach of comparing the two phases at the same temperature where their chemical 
potentials are equal. However, we can adopt the reasonable assumption that the free 
energy of the metastable coil or globule phases vary little over the temperature range 
AT of the transition zone. Consequently, we compare the coil free energy at T, +AT 
with that of the globule at T,-AT, where T, is the centre of the transition zone, in 
order to describe the thermodynamics of the coil-globule transition. 

We estimate T, as the temperature at which 6 - r,, since for w small, as anticipated 
from experiments, this gives a stronger constraint than the stability condition. Assuming 
w to be weakly temperature dependent, the coupling constant g ,  at T, is obtained from 
using an equality in (5.2a) along with s*-O(so) to yield 

g,N1/’- w’/’(64~/3). (6.1) 

The coil radius at T, is approximated by substitution of (6.1) into (4.28a) as 

ro/*=g, = (3/.rr) 1 / 3 L ~ I / 2 ~ 1 / 6 ( f 1 ) l / 2  8 (6 . la)  

which is proportional to the free coil dependence with a w-dependent coefficient 
that is both difficult to separate experimentally and difficult to calculate accurately 
with the approximation (4.6) and (4.7). Hence, the transition begins in the region 
where the polymer is nearly ideal, so the coil state before onset of collapse is well 
described as a perturbed coil with weakly attractive two-body interactions and repulsive 
three-body ones. 

We have previously analysed the theta point (‘tricritical’) region for polymers 
(Kholodenko and Freed 1984a) using renormalisation group methods with both two- 
body and three-body interactions. The renormalisation group treatment in this region 
provides a description of physically observable quantities in terms of an effective 
coupling constant geff. Under the conditions that 22wln(N/L)>> 1 with L a 
phenomenological scaling length of the theory, the effective coupling constant contains 
logarithmic corrections, g,, = Sg[22w In(N/L)I4”’ where Sg is chosen to vanish at the 
same point as the second virial coefficient. Since the precise magnitude of w is not 
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yet known (nor has L yet been related to experiment in the theta point region), we 
prefer to use g,, as the renormalised two-body interaction parameter without further 
specifying its dependence on w and N/ L. Given these considerations, the theta domain 
is defined as 

I g e f f l N ’ / 2 ~  1, (6.lb) 

providing the conditions under which the renormalised expansions in geff  are valid. 
Calculation of the coil-globule equilibrium requires the evaluation of the coil free 

energy within the theta domain. It is known (des Cloizeaux 1981, Elderfield 1981) 
that both the free energy and entropy for the coil state are in general, non-uniuersal 
functions and display a strong sensitivity to microscopic parameters describing the 
polymers. The same sensitivity is exhibited by lattice calculations on avoiding walks. 
A lattice with coordination number z yields C ,  = Z” different random walks with n 
steps, giving a free energy of F = -kTn In z or a free energy per step of F = -kT In z. 
Self-avoiding walks have a renormalised connectivity constant of p < z - 1 , because 
immediate self-reversals are forbidden. The total free energy is F =  
-kTn In p - kT( y - 1)  In n where y is the usual ‘critical exponent’, and the term in 
In n is the universal portion of the free energy which for n +CO is negligible in 
comparison with the leading ( E n )  non-universal portion. In general, this non-universal 
free energy varies with the coupling constant, and its additivity implies proportionality 
to chain length N which must have a form like Nf(g1’”) with I a microscopic length 
scale and g + g,,. When computed perturbatively, it must have a form like Nf(g1’”) = 
N[A +gef fA ,  +O(g: , ) ]  with A and Ac some microscopic parameters appropriate to the 
coil state. 

The calculations of Kholodenko and Freed (1984a) give under the condition (6.1 b )  

d3rG(r ,  N ) =  1 +2g,ff(2N/7r)’ /2+O(g,2,) .  I 
Combining the definition (4.8) of the free energy with the non-universal contributions 
described above yields the coil free energy as 

- F , / k T =  N(A +g,nA,) +2g, , (2N/7r)’ /2+O(g,2,) .  ( 6 . 3 )  

The reference free energy is chosen as that for the theta point. Then the free energy 
above the theta point must be positive, while below the theta point it must be negative 
to ensure that the globular state has free energy lower than that for the coil state. 
Taking g,,  = - g / 2 n  (since our convention in this paper is g > 0 for attractive interac- 
tions, while g,,  b 0 for repulsive ones above the theta point and since our previous 
work absorbs a factor of 277 into the coupling constant) these conditions imply that (6.3) 
becomes in the coil-globule transition region 

( 6 . 3 ~ )  

where A, is negative. 
The globule free energy likewise has a non-universal portion which is written as 

kTgA,N analogous to ( 6 . 3 ~ ) .  Adding this to the calculated universal terms in Q 5 gives 
the full globule free energy as 

FJkT = gA,N +g(2N/7r3)”’  + O ( g 2 )  

co exp(s*N) +E c, exp(siN) +fluctuation part (6.4) 
I 
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where Ae is, in general, different from A,, and co and ci are constants which are 
unnecessary here. The si from (5.16) lie in the range of O <  s, < so, so that as N + 00, 

s* + so, and the terms in si can be neglected, leaving the globule free energy as 

F e / k T = - N [ ( g 2 / 2 w )  + g A , ] .  ( 6 . 4 ~ )  

The condition of phase equilibrium a t  T, implies Fe= F,. Assuming that w is 
negligibly temperature dependent, we let g ,  = g (  T,). Equating ( 6 . 3 ~ )  and ( 6 . 4 ~ )  at T, 
and rearranging yields 

g,= 2 w ( A ,  - Ae)  - 2 ~ ( 2 /  7r3 N)”’ .  (6.5) 

We have already obtained two other estimates of g,. One is provided by the limit of 
stability from ( 5 . 1 2 )  with an equality sign of 

g ,  = N - 1 ’ 2 ~ ( 2 ) 3 / 2 ( 3 / . r r )  (6.6) 

while the other arises from the condition t o (s * )=  ro ( s* )  from ( 5 . 2 ~ )  with the equality 
sign and s + so, which is reduced then to an estimate (6.1). Beginning at low tem- 
peratures in the globule state, it is necessary to determine which condition (6.6) or 
( 6 . 1 ~ )  is first attained as the temperature is raised. We continue the empirical form 
(Berry 1966) 

g = A [( @/ T )  - 1 ] (6.7) 

from above the theta point with A a constant and 0 the theta temperature. Comparison 
of (6.6) and ( 6 . 1 ~ )  shows that estimate (6.1) provides the lower temperature when 

w < 2’( ~ / 3 ) ~ =  615, (6.8) 

whereas for w > 615, g ,  given by (6.6) determines the transition temperature. As w is 
expected to be small (Ptitsyn et a1 1968), the case of (6.8) is treated first, but then the 
opposite limit is analysed because experimental values of w for real polymer systems 
are not yet available. 

Equating (6.5) with (6.1) and rearranging leads to 

(A, - he)/ r, = ( 3 2  .rr /3  + (21  .r3) 
- I ’ W  (6.9) 

Writing the heat of transition as 

Q =  ~ C ( & - ~ J T c  (6.10) 

where S ,  = -(aF,/aT),  etc for the globule, using (6.9), (6 .3a) ,  ( 6 . 4 ~ )  and (6.7) gives 
(per monomer) 

(6.1 1 )  

where O( 1/ N )  differences between T, and 0 are dropped except in terms containing 
g, where they are relevant. Equation (6.1 1 )  implies that in the limit N + CO, the specific 
heat of transition vanishes f o r  any j n i t e  w. The total heat for the system is non-zero 
and behaves as N”’. This dependence is indicative of the fact that polymers are 
unusual ‘critical’ systems since for large N they always possess long-range correlations. 
Equation (6.1 1 )  for finite w suggests a coil-globule transition that is closer to being 
second order (when N + m )  in agreement with the conclusion of Moore (1977). 
However, if the combination A ( w N ) - ” ~  + constant for w + 0, N + 00, the specific heat 

Q/ N = Ak@N-1’Z“’j’.rr-(2/.rr3)1’2)~-1’2+(2/.rr3)1’2] 
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of (6.1 1 )  stays non-zero, and the coil-globule transition becomes first order. 
Kholodenko and Freed (1984a) show that the effective three-body interaction w -+ 0 
as N + w ,  and therefore, depending on the empirical behaviour of A, (6.11) could 
establish the long sought ‘tricriticality’ of the coil-globule transition in this special 
limit. This strong dependence of the order of the coil-globule transition on the 
magnitude of the three-body interaction parameter w is in accord with the O( n )  model 
renormalisation group treatment of Blankschtein and Aharony ( 1983) of the tricritical 
region. They show that the magnitude of the # J ~  coupling constant as well as additional 
marginal and irrelevant terms can alter the order of the transition. The sensitivity of 
(6.1 1 ), and hence the order of the coil-globule transition, to the value of w and perhaps 
other marginal and irrelevant operators associated with unaccounted microscopic 
variables may explain the suggested non-universality of this transition. 

For w>615 we equate (6.5) to (6.6) to find 

(6.12) 

The specific heat of transition is then obtained as 

Q / N  = h k O N - ” 2 ( 2 / ~ 3 ) 1 ’ 2 ( ~  + 9 r 1 / * )  (6.13) 

corresponding to a second-order-like transition for N + a. Hence, (6.13) is consistent 
with (6.1 1 )  for non-zero w, merely indicating that for large enough w, the specific heat 
becomes independent of w. 
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